435 research outputs found

    Algebraic methods for dynamic systems

    Get PDF
    Algebraic methods for application to dynamic control system

    Lag synchronization and scaling of chaotic attractor in coupled system

    Get PDF
    We report a design of delay coupling for lag synchronization in two unidirectionally coupled chaotic oscillators. A delay term is introduced in the definition of the coupling to target any desired lag between the driver and the response. The stability of the lag synchronization is ensured by using the Hurwitz matrix stability. We are able to scale up or down the size of a driver attractor at a response system in presence of a lag. This allows compensating the attenuation of the amplitude of a signal during transmission through a delay line. The delay coupling is illustrated with numerical examples of 3D systems, the Hindmarsh-Rose neuron model, the R\"ossler system and a Sprott system and, a 4D system. We implemented the coupling in electronic circuit to realize any desired lag synchronization in chaotic oscillators and scaling of attractors.Comment: 10 pages, 7 figure

    A Scalable, Self-Analyzing Digital Locking System for use on Quantum Optics Experiments

    Full text link
    Digital control of optics experiments has many advantages over analog control systems, specifically in terms of scalability, cost, flexibility, and the integration of system information into one location. We present a digital control system, freely available for download online, specifically designed for quantum optics experiments that allows for automatic and sequential re-locking of optical components. We show how the inbuilt locking analysis tools, including a white-noise network analyzer, can be used to help optimize individual locks, and verify the long term stability of the digital system. Finally, we present an example of the benefits of digital locking for quantum optics by applying the code to a specific experiment used to characterize optical Schrodinger cat states.Comment: 7 pages, 5 figure

    Analysis and design of solid-state circuits utilizing the NASA analysis computer program Annual report

    Get PDF
    Network Analysis for Systems Application Program /NASAP/ applicable in analysis and design of solid state circuit

    Testimony to the Senate Judiciary Committee by the ERA Project at Columbia Law School and Constitutional Law Scholars on Joint Resolution S.J.Res. 4: Removing the Deadline for the Ratification of the Equal Rights Amendment

    Get PDF
    The Equal Rights Amendment Project at Columbia Law School (ERA Project) and the undersigned constitutional law scholars provide the following analysis of S.J.Res. 4, resolving to remove the time limit for the ratification of the Equal Rights Amendment (ERA) and declaring the ERA fully ratified

    Information capacity in the weak-signal approximation

    Full text link
    We derive an approximate expression for mutual information in a broad class of discrete-time stationary channels with continuous input, under the constraint of vanishing input amplitude or power. The approximation describes the input by its covariance matrix, while the channel properties are described by the Fisher information matrix. This separation of input and channel properties allows us to analyze the optimality conditions in a convenient way. We show that input correlations in memoryless channels do not affect channel capacity since their effect decreases fast with vanishing input amplitude or power. On the other hand, for channels with memory, properly matching the input covariances to the dependence structure of the noise may lead to almost noiseless information transfer, even for intermediate values of the noise correlations. Since many model systems described in mathematical neuroscience and biophysics operate in the high noise regime and weak-signal conditions, we believe, that the described results are of potential interest also to researchers in these areas.Comment: 11 pages, 4 figures; accepted for publication in Physical Review

    Continuous quantum feedback of coherent oscillations in a solid-state qubit

    Full text link
    We have analyzed theoretically the operation of the Bayesian quantum feedback of a solid-state qubit, designed to maintain perfect coherent oscillations in the qubit for arbitrarily long time. In particular, we have studied the feedback efficiency in presence of dephasing environment and detector nonideality. Also, we have analyzed the effect of qubit parameter deviations and studied the quantum feedback control of an energy-asymmetric qubit.Comment: 11 page

    Design of coupling for synchronization in time-delayed systems

    Full text link
    We report a design of delay coupling for targeting desired synchronization in delay dynamical systems. We target synchronization, antisynchronization, lag-, antilag- synchronization, amplitude death (or oscillation death) and generalized synchronization in mismatched oscillators. A scaling of the size of an attractor is made possible in different synchronization regimes. We realize a type of mixed synchronization where synchronization, antisynchronization coexist in different pairs of state variables of the coupled system. We establish the stability condition of synchronization using the Krasovskii-Lyapunov function theory and the Hurwitz matrix criterion. We present numerical examples using the Mackey-Glass system and a delay R\"{o}ssler system.Comment: 8 pages, 6 figures; Chaos 22 (2012

    Synthesis of multi-loop automatic control systems by the nonlinear programming method

    Get PDF
    The article deals with the problem of calculation of the multi-loop control systems optimal tuning parameters by numerical methods and nonlinear programming methods. For this purpose, in the paper the Optimization Toolbox of Matlab is used

    Formalising the Continuous/Discrete Modeling Step

    Full text link
    Formally capturing the transition from a continuous model to a discrete model is investigated using model based refinement techniques. A very simple model for stopping (eg. of a train) is developed in both the continuous and discrete domains. The difference between the two is quantified using generic results from ODE theory, and these estimates can be compared with the exact solutions. Such results do not fit well into a conventional model based refinement framework; however they can be accommodated into a model based retrenchment. The retrenchment is described, and the way it can interface to refinement development on both the continuous and discrete sides is outlined. The approach is compared to what can be achieved using hybrid systems techniques.Comment: In Proceedings Refine 2011, arXiv:1106.348
    corecore